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Editor’s Note
Dear Readers,
 
Since the COVID
year 2020, the disease has spread about every country around the 
world. The Thermal Spray market has experienced negative growth 
during the pandemic time; however it is expected to be back on
in end of 2022 with resumption of the economic activities.
 
Asia-Pacific Thermal Spray Market is expected to expand at a 
projected CAGR of almost 10% during the forecast period, 2022 to 2026. 
The thermal spray equipment
primarily with the increased use of thermal spray 
aerospace, 
nuclear sector
with advancements in technology and R&D, suppor
government.
 
Due to the global conditions all the major companies are investing in 
India for their future projects which will definitely increase the 
thermal spray market in the country.
 
I am particularly pleased to be allowed to recommend to you the latest 
issue of the 
featured articles 
Spraying Activity at Chemnitz University of Technolog
Thickness on the TBC Deposition 
Features, A Novel Approach to Deposit Dense Cr
Improved Flame Spray Process “H
Correlation 
Inconel625
Thermal Spray Energy Efficiency Calculations
research trends in thermal spray development.
 
Looking at the future of thermal spray in India, it will be pleasing 
SPRAYTODAY
the country by providing the latest information on thermal spray 
technology.
 
Be healthy, active and curious.
 
Best Regards,

(Dr. Satish Tailor)
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Thermal Spraying Activity at Chemnitz 

University 
 

By 

Engineering Group, 

Email: 

Abstract
The activity in the field of thermal spray of the Institute of 
Materials Science 
University of Technology (CUT) in Germany is briefly 
reviewed. The involved researchers as well as its 
organization and the equipment available are described. 
The 
that 
in the field.
 
Creation of laboratory
The activity of thermal spray field in the CUT has started in 
1994 by the nomination of Prof. B. Wielage to the Chair of 
Composite Materials at the Faculty of Mec
Engineering. The chair holder had an industrial experience 
and got his PhD in the well
Steffe
Nowadays, thermal spray activity is doneat the Chair of 
Materials and Surface E
Lampke. At present, his group comprises 42 scientific and 
technical staff and conducts research at the highest 
scientific level.
 
 Electrolyte development for alloy deposition and 

conversion c
 New material properties through generative 

manufacturing and combination processes;
 Design of interfaces and transition structures in hybrid 

composites;
 Thermomechanical and thermochemical material 

treatment;
 Material fatigue and damage behavior, 

coated and corroded materials.
 
Organization and equipment related to thermal spraying
The thermal spray laboratory, managed by Dr. T. Lindner, is 
well
technology starting from powders producti
sprayed coatings characterization.

                                        
1Prof. H.
of Fame in 2002

                                                                                                  

Thermal Spraying Activity at Chemnitz 

University 

By T. Lampke, L. Pawlowski

Engineering Group, 

Email: lech.pawlowski@unilim.fr

Abstract 
The activity in the field of thermal spray of the Institute of 
Materials Science 
University of Technology (CUT) in Germany is briefly 
reviewed. The involved researchers as well as its 
organization and the equipment available are described. 
The examples of research activity are
that of international
in the field. 

Creation of laboratory
The activity of thermal spray field in the CUT has started in 
1994 by the nomination of Prof. B. Wielage to the Chair of 
Composite Materials at the Faculty of Mec
Engineering. The chair holder had an industrial experience 
and got his PhD in the well
Steffe 1  at the 
Nowadays, thermal spray activity is doneat the Chair of 
Materials and Surface E
Lampke. At present, his group comprises 42 scientific and 
technical staff and conducts research at the highest 
scientific level. The core topics of research are: 

Electrolyte development for alloy deposition and 
conversion coatings;
New material properties through generative 
manufacturing and combination processes;
Design of interfaces and transition structures in hybrid 
composites; 
Thermomechanical and thermochemical material 
treatment; 
Material fatigue and damage behavior, 
coated and corroded materials.

Organization and equipment related to thermal spraying
The thermal spray laboratory, managed by Dr. T. Lindner, is 
well-equipped enabling development of entire coatings 
technology starting from powders producti
sprayed coatings characterization.

                                        
Prof. H.-D. Steffens was an Inductee in Thermal Spraying Hall 

of Fame in 2002 

                                                                                              

Thermal Spraying Activity at Chemnitz 

University 

T. Lampke, L. Pawlowski

Engineering Group, Chemnitz University of Technology, D

lech.pawlowski@unilim.fr

The activity in the field of thermal spray of the Institute of 
Materials Science and Engineering at the
University of Technology (CUT) in Germany is briefly 
reviewed. The involved researchers as well as its 
organization and the equipment available are described. 

examples of research activity are
of international collaboration with

Creation of laboratory 
The activity of thermal spray field in the CUT has started in 
1994 by the nomination of Prof. B. Wielage to the Chair of 
Composite Materials at the Faculty of Mec
Engineering. The chair holder had an industrial experience 
and got his PhD in the well-known laboratory of Prof. H.

 Dortmund University of Technology. 
Nowadays, thermal spray activity is doneat the Chair of 
Materials and Surface Engineering managed by Prof. T. 
Lampke. At present, his group comprises 42 scientific and 
technical staff and conducts research at the highest 

The core topics of research are: 

Electrolyte development for alloy deposition and 
oatings; 

New material properties through generative 
manufacturing and combination processes;
Design of interfaces and transition structures in hybrid 

 
Thermomechanical and thermochemical material 

Material fatigue and damage behavior, 
coated and corroded materials.

Organization and equipment related to thermal spraying
The thermal spray laboratory, managed by Dr. T. Lindner, is 

enabling development of entire coatings 
technology starting from powders producti
sprayed coatings characterization.
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Thermal Spraying Activity at Chemnitz 

University of Technology

T. Lampke, L. Pawlowski, Institute of Materials Science and Engineering, Materials and Surface 

Chemnitz University of Technology, D

lech.pawlowski@unilim.fr   

The activity in the field of thermal spray of the Institute of 
and Engineering at the

University of Technology (CUT) in Germany is briefly 
reviewed. The involved researchers as well as its 
organization and the equipment available are described. 

examples of research activity are presented as well as 
collaboration with other groups active 

The activity of thermal spray field in the CUT has started in 
1994 by the nomination of Prof. B. Wielage to the Chair of 
Composite Materials at the Faculty of Mec
Engineering. The chair holder had an industrial experience 

known laboratory of Prof. H.
Dortmund University of Technology. 

Nowadays, thermal spray activity is doneat the Chair of 
ngineering managed by Prof. T. 

Lampke. At present, his group comprises 42 scientific and 
technical staff and conducts research at the highest 

The core topics of research are: 

Electrolyte development for alloy deposition and 

New material properties through generative 
manufacturing and combination processes;
Design of interfaces and transition structures in hybrid 

Thermomechanical and thermochemical material 

Material fatigue and damage behavior, especially on 
coated and corroded materials. 

Organization and equipment related to thermal spraying
The thermal spray laboratory, managed by Dr. T. Lindner, is 

enabling development of entire coatings 
technology starting from powders producti
sprayed coatings characterization. 

                    
D. Steffens was an Inductee in Thermal Spraying Hall 
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Electrolyte development for alloy deposition and 

New material properties through generative 
manufacturing and combination processes; 
Design of interfaces and transition structures in hybrid 
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especially on 

Organization and equipment related to thermal spraying 
The thermal spray laboratory, managed by Dr. T. Lindner, is 

enabling development of entire coatings 
technology starting from powders production up to the 

D. Steffens was an Inductee in Thermal Spraying Hall 
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The manufacturing of powders is possible using high
energy or planetary ball mills of different types. The mills 
may work in air, inert gas and vacuum enabling powders of 
metals, alloys, nanostructured compos
e.g. FeCrB with CrB2shown in Fig. 1and many others to be 
developed and produced in the quantities useful for 
research and development.

The coatings can be thermally sprayed onto the
of metals, ceramics, polymers, glasses but
natural materials such as woods, composites.
spray installations are robotized and include among others: 
(i) atmospheric plasma spraying (APS) with F6 plasma 
torch of GTV; (ii) high velocity oxy
using powder an
JP5000 set up; and (iii) cold gas spraying (CGS) installation 
including torch of type Kinetics 3000 of CGT. The thermal 
spray processes can be optimized using emission 
spectrometers enabling chemical analysis of spe
present in flames and jets and the measurements of 
sprayed particles
trajectories in plasma or flame using SprayWatch setup of 
Oseir. The obtained coatings can be densified by post
treatment using e.g. hig
spark plasma sintering (SPS) applied recently to densify 
coating of Hadfield steel [2]. 

The obtained coatings microstructure can be tested using 
different optical and electron microscopes. The latter 
includes transmission el
Hitachi and scanning electron microscopes (SEM) including 
field emission one of type NEON40EsB equipped in electron 
dispersive X
backscatter diffraction (EBSD) setups. The laboratory is 
also equipped to carry out the tests of: (i) mechanical 
properties including wear resistance and adhesion of 
coatings; (ii) corrosion tests at different boundary 
conditions, e.g. temperature, electrolyte, humidity; and (iii) 
thermal analyses.
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coatings sprayed using powders prepared by self
propagating high temperature synthesis (SHS) 
weredescribed by Steinhäuseret al. [3]. Similar 
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plasma sprayed and CO2 laser glazed to reduce their
porosity (see Fig. 2). The microstructure of MMC 
composed of Al+50 wt.% SiC obtained by HVOF spraying 
and laser shock treatment was studied using TEM 
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Fig
TiC coating obtained by plasma spraying and laser glazing. The 
symbols mean: TiC 

 
The possible applications of the metal coatings of Al and 
 

 

8 
SPRAYTODAY

                      
Research activity
The research activities of the group have
2000-ties with preparation of metal matrix composite 
(MMC) powders. The composites such as shown in Fig. 1 
were sprayed using APS and HVOF techniques and their 
mechanical properties were characterized and e.g. 
Vickers hardness tested with 3
and could be useful for paper industry applications. [1].

Figure 1: SEM (secondary electrons) of the cross
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coatings sprayed using powders prepared by self
propagating high temperature synthesis (SHS) 
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plasma sprayed and CO2 laser glazed to reduce their
porosity (see Fig. 2). The microstructure of MMC 
composed of Al+50 wt.% SiC obtained by HVOF spraying 
and laser shock treatment was studied using TEM 
presented by Podlesak et al. [5].

Figure 2: Optical micrograph of polished cross
TiC coating obtained by plasma spraying and laser glazing. The 
symbols mean: TiC 
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Cu obtained using cold spray onto alumina substrates for 
power electronic circuits were studied and 
themicrostructure of and bonding mechanism obtained 
coatings were analyzed, too [6
industrial application of thermally sprayed coati
concerned thermal barrier coatings (TBC). The studies of 
suspension plasma spraying (SPS) zirconia were carried 
out to develop columnar microstructure [9
development of thermally grown oxide (TGO) being an 
important part of modern TBC starting 
vapor deposited (PVD) Al film was studied by Ali et al.[11
12]. 
Many studies were devoted to understand and to improve 
the adhesion of coatings to the different type of 
substrates, and to use the coatings to improve the 
contact between di
Consequently, Lindner et al. [13] used arc sprayed wires 
of NiAl and NiCr alloys to improve the contact between 
low carbon steel and fiber reinforced polymer layers.
Saborowski et al. [14] studied additional methods of 
enhancing
metals including grit blasting and laser structuring.
More recently, an interesting idea of plasma spraying of 
the mixtures of ceramic powders of Al2O3, Cr2O3 and 
TiO2 to obtain the coatings having mechanical properti
modified by the content of ternary blend was developed 
by Grimm et al. [15, 16]. The coatings have the 
microstructure including lamellas of each oxide, as 
shown in
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International cooperation and collaboration
The activity of thermal spraying group has been realized 
in international collaboration with many laboratories. The 
French
initial works on laser treatment of sprayed coatings [4
The cooperation
sprayed coatings occurred with the laboratories at: (i) 
Ecole Nationale Supérieure de Chimie de Lille
and, (ii)Wrocław University of Technology (Poland) [9, 
10].Finally, the research on TBCs was carried out together 
with: (
Turkish Universities in Bartin and in Manisa [18]; and, (iii) 
the University West in Sweden [19].
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Introduction 
Thermal Barrier Coatings (TBCs), manufactured via 
Atmospheric Plasma Spray (APS), have been used in gas 
turbines for decades.  These coatings provide thermal 
protection to components located in the hot section of the 
engine (e.g., combustion t
vanes, ring segments, etc.) [1, 2, 3].The components used 
in large power generation turbines are much larger and 
utilize much thicker coatings than their propulsion 
turbine counterparts. For some components, it could take 
several hours to apply coating and the manufacturing 
cost associate with, hardware
In production settings, design required target thickness 
for a given part is mostly achieved by adjusting the 
number of spray passes or increase feed
Therefore, for a fixed component and a fixed set of spray 
parameters, a higher TBC thickness requires a higher 
number of spray passes.  The underlying assumptions are 
that the coating thickness varies roughly linearly with the 
number of passes

Figure 1: Change in coating application rate with 
thickness under actual production settings
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Atmospheric Plasma Spray (APS), have been used in gas 
turbines for decades.  These coatings provide thermal 
protection to components located in the hot section of the 

ransitions and baskets, blades, 
vanes, ring segments, etc.) [1, 2, 3].The components used 
in large power generation turbines are much larger and 
utilize much thicker coatings than their propulsion 
turbine counterparts. For some components, it could take 

veral hours to apply coating and the manufacturing 
cost associate with, hardware and consumables
In production settings, design required target thickness 
for a given part is mostly achieved by adjusting the 
number of spray passes or increase feed
Therefore, for a fixed component and a fixed set of spray 
parameters, a higher TBC thickness requires a higher 
number of spray passes.  The underlying assumptions are 
that the coating thickness varies roughly linearly with the 

: Change in coating application rate with 
thickness under actual production settings
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in large power generation turbines are much larger and 
utilize much thicker coatings than their propulsion 
turbine counterparts. For some components, it could take 

veral hours to apply coating and the manufacturing 
and consumables is high.  

In production settings, design required target thickness 
for a given part is mostly achieved by adjusting the 
number of spray passes or increase feed rates [4].  
Therefore, for a fixed component and a fixed set of spray 
parameters, a higher TBC thickness requires a higher 
number of spray passes.  The underlying assumptions are 
that the coating thickness varies roughly linearly with the 
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in large power generation turbines are much larger and 
utilize much thicker coatings than their propulsion 
turbine counterparts. For some components, it could take 

veral hours to apply coating and the manufacturing 
is high.  

In production settings, design required target thickness 
for a given part is mostly achieved by adjusting the 

rates [4].  
Therefore, for a fixed component and a fixed set of spray 
parameters, a higher TBC thickness requires a higher 
number of spray passes.  The underlying assumptions are 
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combustor part
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This prompted us to investigate (1) the causes governing 
this dependence of Application Rate (AR) on the TBC 
thickness
coating microstructure and properties. 
 
Materials and Methods
Several TBCs samples were sprayed on stainless steel / 
mild steel using several spray parameter
spray parameter set, two steel spe
x20mm x5mm (for metallographic evaluation), and one 
mild steel plate 100 mm x100 mm x5 mm (for deposit 
efficiency (DE) and application rate (AR) evaluations) 
were prepared by grit blasting on one side, then cleaned 
with alcohol before spra
standard 150µmof CoNiCrAlY bond coat was applied
to TBC application. 
 
Commercially available 6
Agglomerated& Sintered (A&S) and Fused & Crushed 
(F&C) morphologies were used for TBC top
of spray parameters were applied to systematically vary 
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In other words, the application rate remains constant 
independent of the target thickness.
manufacturing data from roughly 200 pieces of a 
combustor part indicated that going from a 0.5 mm to 2.0 
mm thick TBC (in the same spray run), there was a 15% 

-in application rate [5].

This prompted us to investigate (1) the causes governing 
this dependence of Application Rate (AR) on the TBC 

kness and (2) whether it had any effects on the 
coating microstructure and properties. 

Materials and Methods
Several TBCs samples were sprayed on stainless steel / 
mild steel using several spray parameter
spray parameter set, two steel spe
x20mm x5mm (for metallographic evaluation), and one 
mild steel plate 100 mm x100 mm x5 mm (for deposit 
efficiency (DE) and application rate (AR) evaluations) 
were prepared by grit blasting on one side, then cleaned 
with alcohol before spra
standard 150µmof CoNiCrAlY bond coat was applied
to TBC application. 

Commercially available 6
Agglomerated& Sintered (A&S) and Fused & Crushed 
(F&C) morphologies were used for TBC top
f spray parameters were applied to systematically vary 

the net enthalpy (heat input minus heat extraction) of the 
process. Table 1 shows the spray parameters used in this 
study. TBC thickness targets
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For DE evaluation, material was sprayed such that the 
coated area was smaller than the plate
(i.e., no spraying outside of the plate). Then the DE was 
calculated as follows:
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Microstructural investigation was conducted on the 
stainless
SEM which included coating porosity, 
thickness etc. Coating Application Rate (thickness per 
pass) was determined from the metallographic coating 
thickness.
 
Results 
Figure 2 (a) shows that the AR varies with target coating 
thickness and can increase or decrease with thickne
depending on spray parameters used. On the other hand, 
the DE does not change with target coating thickness 
(Figure 2 (b)).DE measurements
the four of the six parameters used in this study.
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-ases going from 0.5 mm to 2.0 mm thickness,
expected that the 2.0 mm thick coating will have a lower 
porosity (or higher density) than the 0.5 mm thick 
coating, when there is negligible change in the DE 
between the two coatings.  
 








TBC porosity
above predictions in all
(segmented TBC) where the porosity seems to slightly 
increase rather than decreasing (as per the prediction). 
Possible reasons behind this anomaly may be (1) the 
overall low porosity (<2%) of segmented TBC which does 
not leave mu
thermal spray process. The low porosity is also 
approaching the detection limit of optical microscopes 
making it difficult to discern small changes in porosity at 
that level (2) the wider crack opening in thic
segmented TBC may be counted toward porosity and may 
result in higher porosity number even though the actual 
porosity in the bulk of the TBC may have decreased. 
Thus, it appears that the coating microstructure and AR 
can experience from negligi
with thickness depending upon the process parameters.
To explain the observed behavior, we propose the 
following hypothesis:
Each set of process parameters has a certain amount of 
heat input into the coating (depending upon th
power, spray distance, powder feed rate, surface speed 
etc.)
front and back cooling air flow, coating, and substrate 
thickness etc.). The difference of heat input and heat 
extraction is defined as 
coating becomes thicker, its thermal insulation increases 
which leads to an increase in the net process enthalpy 
for any given process. When the net process enthalpy 
becomes high enough with increased thickness, it leads 
to
inter
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ases going from 0.5 mm to 2.0 mm thickness,
expected that the 2.0 mm thick coating will have a lower 
porosity (or higher density) than the 0.5 mm thick 
coating, when there is negligible change in the DE 
between the two coatings.  

 Examining Figure 2 in the light of relationship (2), the 
following predictions can be made

 The TBCs resulting from Parameter #0 (baseline 
parameter) would show nearly the same porosity in 
0.5 mm and 2 mm thick samples

 The TBCs resulting from Parameters #3 and #5 would 
show a reduction in porosity in the 2 mm thic
relative to the 0.5 mm thick ones

 The TBCs resulting from Parameters #4 would show 
an increase in porosity in the 2 mm thick coating
relative to the 0.5 mm thick ones
 

TBC porosity in Figure 4
above predictions in all
(segmented TBC) where the porosity seems to slightly 
increase rather than decreasing (as per the prediction). 
Possible reasons behind this anomaly may be (1) the 
overall low porosity (<2%) of segmented TBC which does 
not leave much further scope for reduction in porosity via 
thermal spray process. The low porosity is also 
approaching the detection limit of optical microscopes 
making it difficult to discern small changes in porosity at 
that level (2) the wider crack opening in thic
segmented TBC may be counted toward porosity and may 
result in higher porosity number even though the actual 
porosity in the bulk of the TBC may have decreased. 
Thus, it appears that the coating microstructure and AR 
can experience from negligi
with thickness depending upon the process parameters.
To explain the observed behavior, we propose the 
following hypothesis:
Each set of process parameters has a certain amount of 
heat input into the coating (depending upon th
power, spray distance, powder feed rate, surface speed 
etc.) and a certain amount of heat extraction (depending 
front and back cooling air flow, coating, and substrate 
thickness etc.). The difference of heat input and heat 
extraction is defined as 
coating becomes thicker, its thermal insulation increases 
which leads to an increase in the net process enthalpy 
for any given process. When the net process enthalpy 
becomes high enough with increased thickness, it leads 
to an improved flattening of powder particles and the 
inter-splat adhesion. 
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For parameter #0, the 0.5 mm coating and the 2.0 mm 
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unmolten powder particles. For parameter #4, the 2.0 mm 
coating has more areas with fine pores and entrapped 
unmolten powder particles
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This in turn renders reduced porosity (increases density) 
of the coating and hence reduced AR as explained above. 
In some cases, the increased coating density and inter
splat adhesion can lead to higher stresses resulting in 
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the thicker versions of TBC in Parameter #2, #3 and #5. 
The segmented TBC (Parameter #5) already had
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density did not increase with thickness, but cracks 
became more pronounced in the higher thicker thickness 
version. 
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compensated by the entrapment of unmolten particles. In 
such scenarios, either there would be no change, or 
slight increase in AR with thickness. This may have be
the case with Parameter #0 and number #4. Figures 5 
and 6 show the higher magnification SEM images of the 
thin (0.5 mm) and the thick (2.0 mm) versions of TBCs 
fabricated with Parameters #0 and #4, respectively.

Figure 5: SEM images of Parameter #0 TBC at 400X: (a) 
0.5 mm coating and (b) 2.0 mm coating

Figure 6: SEM images of Parameter #4 TBC at 400X: (a) 
0.5 mm coating and (b) 2.0 mm coating

For parameter #0, the 0.5 mm coating and the 2.0 mm 
coating have similar areas
unmolten powder particles. For parameter #4, the 2.0 mm 
coating has more areas with fine pores and entrapped 
unmolten powder particles
These micrographs provide evidence to support the 
proposed hypothesis.
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In serial production of some gas turbine components, the 
TBC application rate was found to vary as a function of 
target thickness rather than staying constant. A 
systematic spray DoE study was performed to investigate 
this effect. T
efficiency and application rates indicated the possible 
differences in coating microstructure between thin and 
thick coatings. Coating porosity investigated using optical 
microscope was consistent with the expecte
coating porosity with thickness in all cases except the 
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Conclusions 
In serial production of some gas turbine components, the 
TBC application rate was found to vary as a function of 
target thickness rather than staying constant. A 
systematic spray DoE study was performed to investigate 
this effect. The correlation between the coating deposit 
efficiency and application rates indicated the possible 
differences in coating microstructure between thin and 
thick coatings. Coating porosity investigated using optical 
microscope was consistent with the expecte
coating porosity with thickness in all cases except the 
segmented TBC. There are other indications such as 
vertical micro-
about the possible underlying phenomena behind these 
effects. A plausible (pr
the observed behavior was proposed which is supported 
by detailed SEM evaluation of the coatings.
correlation of the observed microstructural features with 
the physical properties such as coatings hardness, 
elastic modulus and thermal conductivity will be 
investigated in the future which may provide further 
insights into this “thickness” effect.
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Abstract
Plasma sprayed Cr
components against wear. This study presents an 
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Plasma sprayed Cr2O3 is widely used to protect industrial 
components against wear. This study presents an 
alternative improved flame spray process to deposit 

coating having similar coating properties as like 
Plasma Sprayed ones. Recently, an advanced
velocity oxy fuel (H-LVOF) method, trade name “CERAJET” 
has been considered as promising alternative to produce 
denser and more homogeneous ceramic coatings with 

sprayed surface roughness, similar or better 
coating properties compared 
spraying, suspension HVOF and conventional APS
sprayed coatings. In this study, coatings were deposited 
without applying a bond coat and the microstructural, 
mechanical and wear properties of H
coatings is presented. This study shows a non
and simple method to produce dense Cr
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in the chromia phase [
In order to removing the problem of undesirable product 
formation during spraying of Cr
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option. Researchers are studying Cr
HVOF as well in order to deposit dense coatings. But it is 
observed that the every single pass can be seen in the 
microstructure, it can be attributed to the un
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sprayed coatings and readings were taken at five random 
locations. The adhesion strength was measured per ASTM 
C-633 using an Universal Testing Machine (Instron, USA). 
Fracture toughness of the coatings was also calculated 
using the Vickers indentation procedure. The expression 
KIC = 0.079 (P/a3/2) log (4.5a/c) was used in the fracture 
toughness calculation [
from ten readings. The SprayWatch (Osier, Finland) 
diagnostic system was used to measure the particle 
velocity and temperature of Cr
spraying and found to be 226 m/s and 27970 C, 
respectively. Three
conducted as per ASTM
of the coatings.

 
Results and discussion
In general, conventional plasma sprayed and flame 
sprayed coatings have porosity level in the range of to 5
10%. Producing dense coatings by APS and flame are not 
possible. A typical plasma sprayed Cr
microstructure is shown in Fig. 1a. HVOF sprayed 
suspension ceramic coatings are still not matured 
enough and still need a lot of research. 
Figure 1
of the H
spray distances 70, 85 and 100 mm, at higher 
magnification. Influence of the spray distance can be 
seen clearly in the microstructures.
It can be seen that all three cases (at spray distances 70, 
85 and 100 mm)  produces dense coatings but at the 
spray dista
<1%, whereas at spray distance of 70mm and 85 mm, 
porosity level is found to be 3 % and 2%, respectively. As
sprayed coating (at spray distances 100 mm) had a low 
surface roughness Ra  1 ± 0.3 μm, and at 70 and 
spray distance the Ra values are found to be  Ra  1.3 ± 0.5 
μm and Ra  2.1 ± 0.8, respectively.  
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Table 1

Oxygen
Acetylene

Air
Powder feed rate
Carrier gas flow

Spray distance
Spray angle

Results and discussion
In general, conventional plasma sprayed and flame 
sprayed coatings have porosity level in the range of to 5
10%. Producing dense coatings by APS and flame are not 
possible. A typical plasma sprayed Cr
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tested at a load of 50 N for 200 cycles. H
coatings exhibits slightly better wear resistance than 
plasma sprayed coating (Fig. 2). 

SPRAYTODAY™ |  iTS

: SEM micrographs of (a) Plasma sprayed coating, 
LVOF sprayed coatings at 

(b) 70, (c) 85 and (d) 100 mm
 

A Vickers microhardness of 1373 ± 20 HV0.3, was found to 
mm spray distance whereas 1250±25 HV0.3 and 

23 HV0.3 were found at 70 mm and 85 mm, 
respectively. Furthermore, a better fractu
0.8 ± 0.3 MPa_m0.5 was also observed at 100 mm spray 
distance. Without applying a bond coat, adhesion strength 
of the coating found to be 40±
plasma sprayed coating exhibit the hardness of 1150 ± 5
HV0.3, Adhesion strength 35±

f 2±0.5 MPa_m0.5.
To examine wear characteristics of all as
coatings, three-body dry abrasion tests were conducted 

G65. Alumina (80 meshes) was used as 
abrasive media with a fixed flow rate of 300 g
Wheel rotation was set at 100 rpm. All coatings were 
tested at a load of 50 N for 200 cycles. H
coatings exhibits slightly better wear resistance than 
plasma sprayed coating (Fig. 2). 

iTSA                             

: SEM micrographs of (a) Plasma sprayed coating, 
LVOF sprayed coatings at different spray distances: 

(b) 70, (c) 85 and (d) 100 mm
 

A Vickers microhardness of 1373 ± 20 HV0.3, was found to 
mm spray distance whereas 1250±25 HV0.3 and 

23 HV0.3 were found at 70 mm and 85 mm, 
respectively. Furthermore, a better fractu
0.8 ± 0.3 MPa_m0.5 was also observed at 100 mm spray 
distance. Without applying a bond coat, adhesion strength 
of the coating found to be 40±3 MPa. In comparison, 
plasma sprayed coating exhibit the hardness of 1150 ± 5

ngth 35±5 MPa and fracture 
0.5 MPa_m0.5. 

To examine wear characteristics of all as
body dry abrasion tests were conducted 

G65. Alumina (80 meshes) was used as 
abrasive media with a fixed flow rate of 300 g
Wheel rotation was set at 100 rpm. All coatings were 
tested at a load of 50 N for 200 cycles. H
coatings exhibits slightly better wear resistance than 
plasma sprayed coating (Fig. 2).  

                             FEATURE

: SEM micrographs of (a) Plasma sprayed coating, 
different spray distances: 

(b) 70, (c) 85 and (d) 100 mm 

A Vickers microhardness of 1373 ± 20 HV0.3, was found to 
mm spray distance whereas 1250±25 HV0.3 and 

23 HV0.3 were found at 70 mm and 85 mm, 
respectively. Furthermore, a better fracture toughness of 
0.8 ± 0.3 MPa_m0.5 was also observed at 100 mm spray 
distance. Without applying a bond coat, adhesion strength 

3 MPa. In comparison, 
plasma sprayed coating exhibit the hardness of 1150 ± 5

5 MPa and fracture 

To examine wear characteristics of all as-sprayed 
body dry abrasion tests were conducted 

G65. Alumina (80 meshes) was used as 
abrasive media with a fixed flow rate of 300 gm/min. 
Wheel rotation was set at 100 rpm. All coatings were 
tested at a load of 50 N for 200 cycles. H-LVOF sprayed 
coatings exhibits slightly better wear resistance than 

                              FEATURE - 

 
: SEM micrographs of (a) Plasma sprayed coating, 

different spray distances: 

A Vickers microhardness of 1373 ± 20 HV0.3, was found to 
mm spray distance whereas 1250±25 HV0.3 and 

23 HV0.3 were found at 70 mm and 85 mm, 
re toughness of 

0.8 ± 0.3 MPa_m0.5 was also observed at 100 mm spray 
distance. Without applying a bond coat, adhesion strength 

3 MPa. In comparison, 
plasma sprayed coating exhibit the hardness of 1150 ± 55 

5 MPa and fracture 

sprayed 
body dry abrasion tests were conducted 

G65. Alumina (80 meshes) was used as 
m/min. 

Wheel rotation was set at 100 rpm. All coatings were 
LVOF sprayed 

coatings exhibits slightly better wear resistance than 

 

Figure 3

 
Due to the relaxation of the residual stresses, forms a 
typical microcrack
porosity (7
which was not observed i
(Fig. 1b,c,d). Furthermore, due to the high temperature of 
the plasma flame, during spraying a bond coat is always 
required for plasma sprayed ceramic coating to 
compensate for the thermal mismatch between the 
substrate and the 
required in the H
temperature is very low with respect to the plasma spray 
process. However, a bond coat is recommended for high 
temperature service conditions for greater durability and 
performance but where job service temperature is very 
low can be sprayed directly with H
 
 
 

 Industrial

Figure 2: Weight loss in dry abrasion test 

Figure 3: Cracks formation in the coating at different 

Due to the relaxation of the residual stresses, forms a 
typical microcrack
porosity (7-9 %) in the plasma sprayed coating (Fig 1a), 
which was not observed i
(Fig. 1b,c,d). Furthermore, due to the high temperature of 
the plasma flame, during spraying a bond coat is always 
required for plasma sprayed ceramic coating to 
compensate for the thermal mismatch between the 
substrate and the 
required in the H
temperature is very low with respect to the plasma spray 
process. However, a bond coat is recommended for high 
temperature service conditions for greater durability and 

ormance but where job service temperature is very 
low can be sprayed directly with H

Industrial 

: Weight loss in dry abrasion test 

: Cracks formation in the coating at different 
locations

Due to the relaxation of the residual stresses, forms a 
typical microcrack-like structure with high level of 

9 %) in the plasma sprayed coating (Fig 1a), 
which was not observed in the H
(Fig. 1b,c,d). Furthermore, due to the high temperature of 
the plasma flame, during spraying a bond coat is always 
required for plasma sprayed ceramic coating to 
compensate for the thermal mismatch between the 
substrate and the coating. Whereas, no bond coat is 
required in the H-LVOF process because the flame 
temperature is very low with respect to the plasma spray 
process. However, a bond coat is recommended for high 
temperature service conditions for greater durability and 

ormance but where job service temperature is very 
low can be sprayed directly with H

: Weight loss in dry abrasion test 

: Cracks formation in the coating at different 
locations 

Due to the relaxation of the residual stresses, forms a 
like structure with high level of 

9 %) in the plasma sprayed coating (Fig 1a), 
n the H-LVOF Cr2

(Fig. 1b,c,d). Furthermore, due to the high temperature of 
the plasma flame, during spraying a bond coat is always 
required for plasma sprayed ceramic coating to 
compensate for the thermal mismatch between the 

coating. Whereas, no bond coat is 
LVOF process because the flame 

temperature is very low with respect to the plasma spray 
process. However, a bond coat is recommended for high 
temperature service conditions for greater durability and 

ormance but where job service temperature is very 
low can be sprayed directly with H-LVOF process.

 
: Weight loss in dry abrasion test  

: Cracks formation in the coating at different 

Due to the relaxation of the residual stresses, forms a 
like structure with high level of 

9 %) in the plasma sprayed coating (Fig 1a), 

2O3 coatings 
(Fig. 1b,c,d). Furthermore, due to the high temperature of 
the plasma flame, during spraying a bond coat is always 
required for plasma sprayed ceramic coating to 
compensate for the thermal mismatch between the 

coating. Whereas, no bond coat is 
LVOF process because the flame 

temperature is very low with respect to the plasma spray 
process. However, a bond coat is recommended for high 
temperature service conditions for greater durability and 

ormance but where job service temperature is very 
LVOF process. 

 



    
 

Sufficient cooling of the substrate is very important if no 
bold coat is applied. It was noticed that in absence of 
bond coat layer, continuous two passes of ceramic coat 
affect the coating properties and due to excessive 
thermal loading some vertical and 
were formed inside the coating, as shown in Fig. 3. 
Whereas, controlled cooling of substrates eliminate this 
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and D. Stö ver, Review of New Developments in 
Suspension and Solution Precursor Thermal Spray 
Processes, J. Therm. Spray Technol., 2011, 20(4), p 677
J. Rauch, G. Bolelli, A. Killinger, R. Gadow, V. Cannillo, and 
L. Lusvarghi, Advances in High Velocity Suspension Flame 
Spraying (HVSFS), Surf. Coat. Techno
2131- 2138.  
A. Killinger, A. Rempp, A. Manzat, P. Mu l̈ler, and R. 
Gadow, High-Vel
Consisting of Nanoscale and Submicronscale Oxide 
Powders, Therm. Spray Bull., 2015, 8(1), p 62
F.-L. Toma, S. Scheitz, R. Trache, S. Langner, C. Leyens, A. 
Potthoff, and K. Oerschla¨gel, Effect of Feedstock 
Characteristics and Operating Parameters on the 
Properties of Cr
HVOF Spraying, in Proceedings International Thermal 
Spray Conference ITSC 2015 Long Beach, California USA, 
(ASM International, 2015), p 329
Tailor, S., Vashishtha, N., Modi, A.
Al2O3 Coating by Hybrid
Process. J Therm Spray Tech
Satish Tailor et al
mechanical properties of Al
Hybrid-Low Velocity OxyFuel process, 2021
Scr. 96 025702. 
Evans AG, Wilshaw TR. Quasi
In Brittle Solids
ActaMetall 1976, 24: 939

contribute an a
subscription request, back issue copies, and 
changes of address should be sent to: 
todayspray@outlook.com
todayspray@gmail.com

               SPRAYTODAY

Killinger, R. Gadow, G. Mauer, A. Guignard, R. Vaßen, 
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Introduction 
A serious issue in the power plant and boiler industry is 
the degradation of a 
The boiler tube faces regular failures, for which erosion 
and corrosion are the main diagnostic causes [1
the flue gases pass through the tubes of the boiler, 
erosion of the tube surface starts at various section
occurs primarily at tube side walls reducing its thickness 
and finally, the premature collapse of the tube occurs 
with time. Therefore, to enhance the efficiency and 
reliability of the boilers, detailed investigations must be 
done on the failed boile
the leading cause of tube failures is vital to help to 
minimize the chances of future problems. A 
comprehensive assessment is the most effective method 
of determining the root cause of a failure. A tube failure 
is usuall
outline indicating the actual region of a failure associated 
with boiler bed coils working at elevated temperatures 
inside an industry at Hoshiarpur, Punjab. India is shown 
in Fig.1. Damage has occurred on the impact side of the 
tube.
increasing strain as tube material erodes. It was 
concluded that failure of bed coils occurred due to 
thinning of bed coil (Fig.1b) from the outer diameter of the 
tube with time, caused by the abrasive natu
material ash which strikes the boiler bed coils with high 
velocity. 

The metallic coatings on tubes minimize the degradation 
and erosion in the selected situations. To overcome this 
issue, materials that may have a combination of better 
mechanica
designed urgently. It can be reduced by employing 
surface modification methods like laser cladding, thermal 
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Introduction  
A serious issue in the power plant and boiler industry is 
the degradation of a 
The boiler tube faces regular failures, for which erosion 
and corrosion are the main diagnostic causes [1
the flue gases pass through the tubes of the boiler, 
erosion of the tube surface starts at various section
occurs primarily at tube side walls reducing its thickness 
and finally, the premature collapse of the tube occurs 
with time. Therefore, to enhance the efficiency and 
reliability of the boilers, detailed investigations must be 
done on the failed boile
the leading cause of tube failures is vital to help to 
minimize the chances of future problems. A 
comprehensive assessment is the most effective method 
of determining the root cause of a failure. A tube failure 
is usually a symptom of other
outline indicating the actual region of a failure associated 
with boiler bed coils working at elevated temperatures 
inside an industry at Hoshiarpur, Punjab. India is shown 
in Fig.1. Damage has occurred on the impact side of the 
tube. Ultimate failure results from the rupture due to 
increasing strain as tube material erodes. It was 
concluded that failure of bed coils occurred due to 
thinning of bed coil (Fig.1b) from the outer diameter of the 
tube with time, caused by the abrasive natu
material ash which strikes the boiler bed coils with high 
velocity.  

The metallic coatings on tubes minimize the degradation 
and erosion in the selected situations. To overcome this 
issue, materials that may have a combination of better 
mechanical and tribological properties need to be 
designed urgently. It can be reduced by employing 
surface modification methods like laser cladding, thermal 

SPRAYTODAY™ |  iTS

Structure-

emperature Erosion Performance o

Inconel625

Bimodal Composite Coatings

Gaurav Prashar, Hitesh Vasudev

hitesh.24804@lpu.co.in

A serious issue in the power plant and boiler industry is 
the degradation of a surface with solid particle erosion. 
The boiler tube faces regular failures, for which erosion 
and corrosion are the main diagnostic causes [1
the flue gases pass through the tubes of the boiler, 
erosion of the tube surface starts at various section
occurs primarily at tube side walls reducing its thickness 
and finally, the premature collapse of the tube occurs 
with time. Therefore, to enhance the efficiency and 
reliability of the boilers, detailed investigations must be 
done on the failed boiler tubes. Identifying and rectifying 
the leading cause of tube failures is vital to help to 
minimize the chances of future problems. A 
comprehensive assessment is the most effective method 
of determining the root cause of a failure. A tube failure 

y a symptom of other
outline indicating the actual region of a failure associated 
with boiler bed coils working at elevated temperatures 
inside an industry at Hoshiarpur, Punjab. India is shown 
in Fig.1. Damage has occurred on the impact side of the 

Ultimate failure results from the rupture due to 
increasing strain as tube material erodes. It was 
concluded that failure of bed coils occurred due to 
thinning of bed coil (Fig.1b) from the outer diameter of the 
tube with time, caused by the abrasive natu
material ash which strikes the boiler bed coils with high 

The metallic coatings on tubes minimize the degradation 
and erosion in the selected situations. To overcome this 
issue, materials that may have a combination of better 

l and tribological properties need to be 
designed urgently. It can be reduced by employing 
surface modification methods like laser cladding, thermal 
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A serious issue in the power plant and boiler industry is 
surface with solid particle erosion. 

The boiler tube faces regular failures, for which erosion 
and corrosion are the main diagnostic causes [1
the flue gases pass through the tubes of the boiler, 
erosion of the tube surface starts at various section
occurs primarily at tube side walls reducing its thickness 
and finally, the premature collapse of the tube occurs 
with time. Therefore, to enhance the efficiency and 
reliability of the boilers, detailed investigations must be 

r tubes. Identifying and rectifying 
the leading cause of tube failures is vital to help to 
minimize the chances of future problems. A 
comprehensive assessment is the most effective method 
of determining the root cause of a failure. A tube failure 

y a symptom of other problems. A schematic 
outline indicating the actual region of a failure associated 
with boiler bed coils working at elevated temperatures 
inside an industry at Hoshiarpur, Punjab. India is shown 
in Fig.1. Damage has occurred on the impact side of the 

Ultimate failure results from the rupture due to 
increasing strain as tube material erodes. It was 
concluded that failure of bed coils occurred due to 
thinning of bed coil (Fig.1b) from the outer diameter of the 
tube with time, caused by the abrasive natu
material ash which strikes the boiler bed coils with high 

The metallic coatings on tubes minimize the degradation 
and erosion in the selected situations. To overcome this 
issue, materials that may have a combination of better 

l and tribological properties need to be 
designed urgently. It can be reduced by employing 
surface modification methods like laser cladding, thermal 
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A serious issue in the power plant and boiler industry is 
surface with solid particle erosion. 

The boiler tube faces regular failures, for which erosion 
and corrosion are the main diagnostic causes [1-4]. As 
the flue gases pass through the tubes of the boiler, 
erosion of the tube surface starts at various sections. It 
occurs primarily at tube side walls reducing its thickness 
and finally, the premature collapse of the tube occurs 
with time. Therefore, to enhance the efficiency and 
reliability of the boilers, detailed investigations must be 

r tubes. Identifying and rectifying 
the leading cause of tube failures is vital to help to 
minimize the chances of future problems. A 
comprehensive assessment is the most effective method 
of determining the root cause of a failure. A tube failure 

problems. A schematic 
outline indicating the actual region of a failure associated 
with boiler bed coils working at elevated temperatures 
inside an industry at Hoshiarpur, Punjab. India is shown 
in Fig.1. Damage has occurred on the impact side of the 

Ultimate failure results from the rupture due to 
increasing strain as tube material erodes. It was 
concluded that failure of bed coils occurred due to 
thinning of bed coil (Fig.1b) from the outer diameter of the 
tube with time, caused by the abrasive nature of bed 
material ash which strikes the boiler bed coils with high 

The metallic coatings on tubes minimize the degradation 
and erosion in the selected situations. To overcome this 
issue, materials that may have a combination of better 

l and tribological properties need to be 
designed urgently. It can be reduced by employing 
surface modification methods like laser cladding, thermal 
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A serious issue in the power plant and boiler industry is 
surface with solid particle erosion. 

The boiler tube faces regular failures, for which erosion 
4]. As 

the flue gases pass through the tubes of the boiler, 
s. It 

occurs primarily at tube side walls reducing its thickness 
and finally, the premature collapse of the tube occurs 
with time. Therefore, to enhance the efficiency and 
reliability of the boilers, detailed investigations must be 

r tubes. Identifying and rectifying 
the leading cause of tube failures is vital to help to 
minimize the chances of future problems. A 
comprehensive assessment is the most effective method 
of determining the root cause of a failure. A tube failure 

problems. A schematic 
outline indicating the actual region of a failure associated 
with boiler bed coils working at elevated temperatures 
inside an industry at Hoshiarpur, Punjab. India is shown 
in Fig.1. Damage has occurred on the impact side of the 

Ultimate failure results from the rupture due to 
increasing strain as tube material erodes. It was 
concluded that failure of bed coils occurred due to 
thinning of bed coil (Fig.1b) from the outer diameter of the 

re of bed 
material ash which strikes the boiler bed coils with high 

The metallic coatings on tubes minimize the degradation 
and erosion in the selected situations. To overcome this 
issue, materials that may have a combination of better 

l and tribological properties need to be 
designed urgently. It can be reduced by employing 
surface modification methods like laser cladding, thermal  
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The cermet coatings such as WC
for their effectiveness in protecting components against 
erosion. However, the expenses of p
coatings are too high [14]. In general, nimonic (Ni
based coatings were suggested for components working 
at high temperatures. But their performance decline 
when service temperatures surpass 650 ºC due to the 
diffusion of iron element in
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coating strategies to meet industry expectations. 
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spraying [5], weld overlays [6], heat treatments [7], etc. 
Because of its adaptability in depositing coat
types of materials, thermal spraying has been widely 
employed for the tailoring of component surfaces. These 
coatings extend the life of crucial components by 
minimizing the effect of wear and corrosion [8
Plasma spraying is employed in v
aeronautics, astronautics, metallurgical, and 
petrochemicals due to its merits. The main advantages of 
plasma spray include precise composition and thickness 
control, unlimited substrate size and shape, cost 
efficiency, and bulk producti

Figure 1: (a) Bursting of boiler bed coil tube, (b) thinn
of wall tube due to erosion

The cermet coatings such as WC
for their effectiveness in protecting components against 
erosion. However, the expenses of p
coatings are too high [14]. In general, nimonic (Ni
based coatings were suggested for components working 
at high temperatures. But their performance decline 
when service temperatures surpass 650 ºC due to the 
diffusion of iron element in
Due to this reason, there is a need to develop economical 
coating strategies to meet industry expectations. 
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spraying [5], weld overlays [6], heat treatments [7], etc. 
Because of its adaptability in depositing coat
types of materials, thermal spraying has been widely 
employed for the tailoring of component surfaces. These 
coatings extend the life of crucial components by 
minimizing the effect of wear and corrosion [8
Plasma spraying is employed in v
aeronautics, astronautics, metallurgical, and 
petrochemicals due to its merits. The main advantages of 
plasma spray include precise composition and thickness 
control, unlimited substrate size and shape, cost 
efficiency, and bulk production capacity [12]. 

: (a) Bursting of boiler bed coil tube, (b) thinn
of wall tube due to erosion

The cermet coatings such as WC
for their effectiveness in protecting components against 
erosion. However, the expenses of p
coatings are too high [14]. In general, nimonic (Ni
based coatings were suggested for components working 
at high temperatures. But their performance decline 
when service temperatures surpass 650 ºC due to the 
diffusion of iron element into deposited coatings [15
Due to this reason, there is a need to develop economical 
coating strategies to meet industry expectations. 
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spraying [5], weld overlays [6], heat treatments [7], etc. 
Because of its adaptability in depositing coatings of many 
types of materials, thermal spraying has been widely 
employed for the tailoring of component surfaces. These 
coatings extend the life of crucial components by 
minimizing the effect of wear and corrosion [8
Plasma spraying is employed in various fields like 
aeronautics, astronautics, metallurgical, and 
petrochemicals due to its merits. The main advantages of 
plasma spray include precise composition and thickness 
control, unlimited substrate size and shape, cost 

on capacity [12].  

: (a) Bursting of boiler bed coil tube, (b) thinn
of wall tube due to erosion 

The cermet coatings such as WC-Co-Cr, are well known 
for their effectiveness in protecting components against 
erosion. However, the expenses of producing these 
coatings are too high [14]. In general, nimonic (Ni
based coatings were suggested for components working 
at high temperatures. But their performance decline 
when service temperatures surpass 650 ºC due to the 

to deposited coatings [15
Due to this reason, there is a need to develop economical 
coating strategies to meet industry expectations. 
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minimizing the effect of wear and corrosion [8-11]. 
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Cr, are well known 
for their effectiveness in protecting components against 

roducing these 
coatings are too high [14]. In general, nimonic (Ni-Cr) 
based coatings were suggested for components working 
at high temperatures. But their performance decline 
when service temperatures surpass 650 ºC due to the 

to deposited coatings [15-18]. 
Due to this reason, there is a need to develop economical 
coating strategies to meet industry expectations.  



    
 

Grewal et al., [20] reported that nickel powder blended 
with 40wt% Al
mechanical properties and good resistance to erosion in 
contrast with pure Ni. The influence of the Al
on the mechanical properties of cold spray NiCr coating 
was examined. The improvement in wear resistance of 
col
al., [18] also examined the addition of ceramic 
reinforcement (40wt%) Al
composite coating exhibited high erosion resistance and 
a significant increase in hardness owning to the
reinforcement content. Dosta et al.,[22] also reported 
improvement in wear resistance of composite matrix 
with reinforcement of Al
Kim et al., [23] suggested that hard phase reinforcement 
content in ductile nickel matrix l
40wt.%. In our previous study, the impact of reinforcing 
micrometric particles of Al
Inconel
resistance was shown by coating with 30wt% Al
40 Hv0.2
respectively. This was related to fact that the high 
content of Al
coating by restricting plastic deformation thereby 
improving erosion performance [19, 24
composite coatings should be designed in such a manner 
that they will have the best possible merge of both 
hardness and toughness to combat erosive wear at 
elevated temperatures. But unfortunately, despite high 
hardness and improved tensile strength, compos
coatings lack fracture toughness which is a principal 
property for resisting erosion failure [26]. Some studies 
available in the literature have also indicated the 
importance of bimodal coatings in enhancing mechanical 
properties [27]. The bimodal coat
combination of both micrometric and nanoparticles 
improve the erosion resistance at elevated temperature 
conditions. 

In the present research study, an attempt has been put in 
to develop bimodal IN625
and to compare them with micrometric and nanometric 
coatings. The novelty in the present work is the 
replacement of the available Ni and Ni
matrix with the IN625 matrix. Moreover, to compare the 
effect of the addition of 30 
varying the particle size in micrometric, nanometric, and 
bi
experimental study, the high
performance of plasma
The micrometric,
with the IN625 matrix.  
 

                                                                                   

Grewal et al., [20] reported that nickel powder blended 
with 40wt% Al
mechanical properties and good resistance to erosion in 
contrast with pure Ni. The influence of the Al
on the mechanical properties of cold spray NiCr coating 
was examined. The improvement in wear resistance of 
cold spray NiCr coatings was observed [21]. Praveen et 
al., [18] also examined the addition of ceramic 
reinforcement (40wt%) Al
composite coating exhibited high erosion resistance and 
a significant increase in hardness owning to the
reinforcement content. Dosta et al.,[22] also reported 
improvement in wear resistance of composite matrix 
with reinforcement of Al
Kim et al., [23] suggested that hard phase reinforcement 
content in ductile nickel matrix l
40wt.%. In our previous study, the impact of reinforcing 
micrometric particles of Al
Inconel-718 matrix was analyzed. The highest erosion 
resistance was shown by coating with 30wt% Al
40 Hv0.2) in comparison to 10 wt%  and 20 wt% coatings, 
respectively. This was related to fact that the high 
content of Al2O
coating by restricting plastic deformation thereby 
improving erosion performance [19, 24
omposite coatings should be designed in such a manner 

that they will have the best possible merge of both 
hardness and toughness to combat erosive wear at 
elevated temperatures. But unfortunately, despite high 
hardness and improved tensile strength, compos
coatings lack fracture toughness which is a principal 
property for resisting erosion failure [26]. Some studies 
available in the literature have also indicated the 
importance of bimodal coatings in enhancing mechanical 
properties [27]. The bimodal coat
combination of both micrometric and nanoparticles 
improve the erosion resistance at elevated temperature 
conditions.  

In the present research study, an attempt has been put in 
to develop bimodal IN625
and to compare them with micrometric and nanometric 
coatings. The novelty in the present work is the 
replacement of the available Ni and Ni
matrix with the IN625 matrix. Moreover, to compare the 
effect of the addition of 30 
varying the particle size in micrometric, nanometric, and 
bi-modal forms was also considered. In the current 
experimental study, the high
performance of plasma
The micrometric,
with the IN625 matrix.  
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Grewal et al., [20] reported that nickel powder blended 
with 40wt% Al2O3 reinforcement shows improved 
mechanical properties and good resistance to erosion in 
contrast with pure Ni. The influence of the Al
on the mechanical properties of cold spray NiCr coating 
was examined. The improvement in wear resistance of 

d spray NiCr coatings was observed [21]. Praveen et 
al., [18] also examined the addition of ceramic 
reinforcement (40wt%) Al2
composite coating exhibited high erosion resistance and 
a significant increase in hardness owning to the
reinforcement content. Dosta et al.,[22] also reported 
improvement in wear resistance of composite matrix 
with reinforcement of Al2O3 up to 30 wt% in IN625 matrix. 
Kim et al., [23] suggested that hard phase reinforcement 
content in ductile nickel matrix l
40wt.%. In our previous study, the impact of reinforcing 
micrometric particles of Al2O

718 matrix was analyzed. The highest erosion 
resistance was shown by coating with 30wt% Al

) in comparison to 10 wt%  and 20 wt% coatings, 
respectively. This was related to fact that the high 

O3 increases the hardness of composite 
coating by restricting plastic deformation thereby 
improving erosion performance [19, 24
omposite coatings should be designed in such a manner 

that they will have the best possible merge of both 
hardness and toughness to combat erosive wear at 
elevated temperatures. But unfortunately, despite high 
hardness and improved tensile strength, compos
coatings lack fracture toughness which is a principal 
property for resisting erosion failure [26]. Some studies 
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molten (Fig. 2f). The presence of a dark phase in all 
composite coatings indicates the Al
was further confirmed by the EDS mapping of all three 
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The erosive wear resistance of IN625
coating improves approximately 4.57 times and 3.9 times 
in comparison with bare ASTM S
impact angles respectively. The outcomes of the tests 
revealed that the bimodal composite coatings 
successfully protect the underlying substrate owing to 
their hardness and fracture toughness which is higher 
than the other two coat
bimodal coatings was related to refined microstructures 
and good interaction among nano and micrometric Al
reinforcement.
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At an ITSC conference many years in Long Beach, 
California, I had the pleasure of meeting with and talking 
to several “youngsters” involved in our industry. As a 
“second” generation thermal spray coating 
experimentalist, it appeared to me that we have come 
full
questions we queried our “seniors” when I was first 
starting out in this business. As someone who has been 
involved in coating gas turbine components
enable higher operating temperatures (and, thereby, 
increase the operating efficiency of the engine), it is 
somewhat ironic that our primary mode of applying such 
a coating is so very inefficient! Allow me to explain: 

 
 
(J). 
Heat is the same as energy (really, the concept of “quantity 
of heat” has meaning in the context of an interaction where 
energy is transferred from one system to another as a 
result of a temperature difference), and
as energy or work 
Power is the rate at which work is done, and is measured in 
Watt (W) = J/sec 
1 hp ~750 W

 
This article was written many years ago for a private 
audience and it seems to me that it perhaps can explain 
my aforemention
inefficiency. 
As an example, let’s calculate the amount of heat 
required to melt thermal spray powders and the resulting 
melting efficiency. 
For matters of simplicity, let’s take the case of plasma 
spraying. The power gener
times the amperage. Thus 
 

If we take typical spray parameters for a CoNiCrAlY 
powder, the nominal voltage and amperage are 74 and 
500 (assuming a Metco
respectively, at the spray control console. Typically, the 
gun voltage is a few V lower. In this case, assume the gun 
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starting out in this business. As someone who has been 
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Heat is the same as energy (really, the concept of “quantity 
of heat” has meaning in the context of an interaction where 
energy is transferred from one system to another as a 
result of a temperature difference), and
as energy or work 
Power is the rate at which work is done, and is measured in 
Watt (W) = J/sec 
1 hp ~750 W 

This article was written many years ago for a private 
audience and it seems to me that it perhaps can explain 
my aforemention
inefficiency.  
As an example, let’s calculate the amount of heat 
required to melt thermal spray powders and the resulting 
melting efficiency. 
For matters of simplicity, let’s take the case of plasma 
spraying. The power gener
times the amperage. Thus 

Q = I x V 

If we take typical spray parameters for a CoNiCrAlY 
powder, the nominal voltage and amperage are 74 and 
500 (assuming a Metco
respectively, at the spray control console. Typically, the 
gun voltage is a few V lower. In this case, assume the gun 
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to several “youngsters” involved in our industry. As a 
“second” generation thermal spray coating 
experimentalist, it appeared to me that we have come 

circle in some instances and are asking the same 
questions we queried our “seniors” when I was first 
starting out in this business. As someone who has been 
involved in coating gas turbine components
enable higher operating temperatures (and, thereby, 
increase the operating efficiency of the engine), it is 
somewhat ironic that our primary mode of applying such 
a coating is so very inefficient! Allow me to explain: 

Work and Energy are the same and is measured in Joules 

Heat is the same as energy (really, the concept of “quantity 
of heat” has meaning in the context of an interaction where 
energy is transferred from one system to another as a 
result of a temperature difference), and
as energy or work  
Power is the rate at which work is done, and is measured in 
Watt (W) = J/sec  

This article was written many years ago for a private 
audience and it seems to me that it perhaps can explain 
my aforementioned statement about the process 

As an example, let’s calculate the amount of heat 
required to melt thermal spray powders and the resulting 
melting efficiency.  
For matters of simplicity, let’s take the case of plasma 
spraying. The power generated Q is equal to the voltage 
times the amperage. Thus  

Q = I x V                                        

If we take typical spray parameters for a CoNiCrAlY 
powder, the nominal voltage and amperage are 74 and 
500 (assuming a Metco-Oerlikon 3MB 
respectively, at the spray control console. Typically, the 
gun voltage is a few V lower. In this case, assume the gun 
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“second” generation thermal spray coating 
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circle in some instances and are asking the same 
questions we queried our “seniors” when I was first 
starting out in this business. As someone who has been 
involved in coating gas turbine components
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increase the operating efficiency of the engine), it is 
somewhat ironic that our primary mode of applying such 
a coating is so very inefficient! Allow me to explain: 
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of heat” has meaning in the context of an interaction where 
energy is transferred from one system to another as a 
result of a temperature difference), and has the same units 

Power is the rate at which work is done, and is measured in 

This article was written many years ago for a private 
audience and it seems to me that it perhaps can explain 

ed statement about the process 

As an example, let’s calculate the amount of heat 
required to melt thermal spray powders and the resulting 

For matters of simplicity, let’s take the case of plasma 
ated Q is equal to the voltage 
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At an ITSC conference many years in Long Beach, 
California, I had the pleasure of meeting with and talking 
to several “youngsters” involved in our industry. As a 
“second” generation thermal spray coating 
experimentalist, it appeared to me that we have come 

circle in some instances and are asking the same 
questions we queried our “seniors” when I was first 
starting out in this business. As someone who has been 
involved in coating gas turbine components, primarily to 
enable higher operating temperatures (and, thereby, 
increase the operating efficiency of the engine), it is 
somewhat ironic that our primary mode of applying such 
a coating is so very inefficient! Allow me to explain:  

the same and is measured in Joules 

Heat is the same as energy (really, the concept of “quantity 
of heat” has meaning in the context of an interaction where 
energy is transferred from one system to another as a 

has the same units 
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This article was written many years ago for a private 
audience and it seems to me that it perhaps can explain 

ed statement about the process 

As an example, let’s calculate the amount of heat 
required to melt thermal spray powders and the resulting 

For matters of simplicity, let’s take the case of plasma 
ated Q is equal to the voltage 

                                       (1) 

If we take typical spray parameters for a CoNiCrAlY 
powder, the nominal voltage and amperage are 74 and 

Oerlikon 3MB plasma gun),
respectively, at the spray control console. Typically, the 
gun voltage is a few V lower. In this case, assume the gun 
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At an ITSC conference many years in Long Beach, 
California, I had the pleasure of meeting with and talking 
to several “youngsters” involved in our industry. As a 
“second” generation thermal spray coating 
experimentalist, it appeared to me that we have come 

circle in some instances and are asking the same 
questions we queried our “seniors” when I was first 
starting out in this business. As someone who has been 
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enable higher operating temperatures (and, thereby, 
increase the operating efficiency of the engine), it is 
somewhat ironic that our primary mode of applying such 

Heat is the same as energy (really, the concept of “quantity 
of heat” has meaning in the context of an interaction where 

has the same units 

Power is the rate at which work is done, and is measured in 

This article was written many years ago for a private 
audience and it seems to me that it perhaps can explain 

ed statement about the process 

As an example, let’s calculate the amount of heat 
required to melt thermal spray powders and the resulting 

For matters of simplicity, let’s take the case of plasma 
ated Q is equal to the voltage 

If we take typical spray parameters for a CoNiCrAlY 
powder, the nominal voltage and amperage are 74 and 

plasma gun), 
respectively, at the spray control console. Typically, the 
gun voltage is a few V lower. In this case, assume the gun  

voltage is 70V
Thus, by equation (1) 
 
Q = 500 A x 70V = 35000 watts = 35000 J/s
    =35000/ 4.184 cal /
 
The heat required to heat any material to some final 
temperature T
melting, evaporation, etc.) is given by:

 

The above equation represents: melt solid at a 
temperature T that is 
to Tf, where 
Cp (i) is the specific heat in the state (i) [s = solid, l=liquid]. 
The specific heat Cp is usually a polynomial function of 
temperature. For the sake of simplicity, we will assume 
Cp is a constant over t
 
Going back to our CoNiCrAlY (assume, Co
.5Y composition) example, since an alloy does not have a 
fixed melting point, we will use the range of 1,250° C. and 
2,350° C (1523 
purpose of calculation. 
Our powder feed rate, in spray parameter 21.3, is 
 

 

Assume the following: 
Specific heat of powder is: 0.44 J/(g
The specific heat/mole of all metals are ~ 25 
In 100 g mix, the g. moles of each is as shown in Table 
below, along with the calculations using the law of 
mixture rule, the specific heat is:
 

The heat of transformation (fusion) for the metals are as 
shown: Using the rule of mixtures on th
average approximate heat of fusion is about 247 J/g 
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purpose of calculation. 
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The specific heat/mole of all metals are ~ 25 
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below, along with the calculations using the law of 
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Thus, by equation (1)  

Q = 500 A x 70V = 35000 watts = 35000 J/s
=35000/ 4.184 cal /s = 35 kW        

The heat required to heat any material to some final 
(which may include a change of state, e.g. 

melting, evaporation, etc.) is given by:

The above equation represents: melt solid at a 
temperature T that is below Tf, and then to heat the liquid 

Cp (i) is the specific heat in the state (i) [s = solid, l=liquid]. 
The specific heat Cp is usually a polynomial function of 
temperature. For the sake of simplicity, we will assume 
Cp is a constant over the temperature range of concern. 

Going back to our CoNiCrAlY (assume, Co
.5Y composition) example, since an alloy does not have a 
fixed melting point, we will use the range of 1,250° C. and 

2623 oK, or an average of 2073 
purpose of calculation.  
Our powder feed rate, in spray parameter 21.3, is 

5.5 lbs./hr = 0.693 g/s                             

Assume the following:  
Specific heat of powder is: 0.44 J/(g
The specific heat/mole of all metals are ~ 25 
In 100 g mix, the g. moles of each is as shown in Table 
below, along with the calculations using the law of 
mixture rule, the specific heat is:

The heat of transformation (fusion) for the metals are as 
shown: Using the rule of mixtures on th
average approximate heat of fusion is about 247 J/g 
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Q = 500 A x 70V = 35000 watts = 35000 J/s 
s = 35 kW                            

The heat required to heat any material to some final 
(which may include a change of state, e.g. 

melting, evaporation, etc.) is given by: 

    

The above equation represents: melt solid at a 
, and then to heat the liquid 

Cp (i) is the specific heat in the state (i) [s = solid, l=liquid]. 
The specific heat Cp is usually a polynomial function of 
temperature. For the sake of simplicity, we will assume 

he temperature range of concern. 

Going back to our CoNiCrAlY (assume, Co-32Ni
.5Y composition) example, since an alloy does not have a 
fixed melting point, we will use the range of 1,250° C. and 

K, or an average of 2073 

Our powder feed rate, in spray parameter 21.3, is 

                            

Specific heat of powder is: 0.44 J/(goK) 
The specific heat/mole of all metals are ~ 25 J/(mole
In 100 g mix, the g. moles of each is as shown in Table 
below, along with the calculations using the law of 
mixture rule, the specific heat is: 

The heat of transformation (fusion) for the metals are as 
shown: Using the rule of mixtures on the molar ratios, the 
average approximate heat of fusion is about 247 J/g 

 iTSA                             

                    (2) 

The heat required to heat any material to some final 
(which may include a change of state, e.g. 

    (3) 

The above equation represents: melt solid at a 
, and then to heat the liquid 

Cp (i) is the specific heat in the state (i) [s = solid, l=liquid]. 
The specific heat Cp is usually a polynomial function of 
temperature. For the sake of simplicity, we will assume 

he temperature range of concern.  

32Ni-21Cr-8Al-
.5Y composition) example, since an alloy does not have a 
fixed melting point, we will use the range of 1,250° C. and 

K, or an average of 2073 oK)- for the 

Our powder feed rate, in spray parameter 21.3, is  

                            (4) 

J/(moleoK)  
In 100 g mix, the g. moles of each is as shown in Table 
below, along with the calculations using the law of 

The heat of transformation (fusion) for the metals are as 
e molar ratios, the 

average approximate heat of fusion is about 247 J/g  
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Thus, for a feed rate of 0.693 g/s, our power usage for 
melting is 
 

Let’s also assume that about 1% of the metal is being 
vaporized. The heat of vaporization is shown in Table 
above.
Using the molar ratio of this MCrAlY powder, the 
approximate heat of vaporization is 
 

 

In order to maintain simplicity, let us also assume that 
we are heating the powder just up to the melting point, 
with 1% being vaporized. This implies that the third term 
in eqn. (3) can be set to zero. Thus, the heat required to 
melt 
 

 

 
Heat Loss to water: 
Heat loss to water is given by

Let’s assume that water is flowing at 4 gallons/min 
(=4x3.785 l/min = 0.252 l/s = 252.3 ml/s) 
Also, let’s assume the water temperature rise is 30
(=17
The specific heat of water is about 4.2 J/g
thus, heat extracted by water per second is (1 ml of water 
= 1g mass) 
 

 

Thus, of the 35KW power produced in the plasma torch,
about 18KW are lost to cooling water; about 0.75KW is 
used to melt the powder.
temperature of the ionized gases, generate kinetic energy 
of the powder particles; the remainder is lost as light, 
sound, and resistance loss in the copper cables.
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Thus, for a feed rate of 0.693 g/s, our power usage for 
melting is  

171.4 J/s

Let’s also assume that about 1% of the metal is being 
vaporized. The heat of vaporization is shown in Table 
above. 
Using the molar ratio of this MCrAlY powder, the 
approximate heat of vaporization is 

6770 J/g 

In order to maintain simplicity, let us also assume that 
we are heating the powder just up to the melting point, 
with 1% being vaporized. This implies that the third term 
in eqn. (3) can be set to zero. Thus, the heat required to 
melt and spray the powder is

= (0.476 (2073
= (844.9 +171+67.7) *0.693 
= 750.9 J/s                                                      

Heat Loss to water: 
Heat loss to water is given by

Let’s assume that water is flowing at 4 gallons/min 
(=4x3.785 l/min = 0.252 l/s = 252.3 ml/s) 
Also, let’s assume the water temperature rise is 30
(=17oK).  
The specific heat of water is about 4.2 J/g
thus, heat extracted by water per second is (1 ml of water 
= 1g mass)  

252.3 x 4.2 x 17 = 18014 J/s 

Thus, of the 35KW power produced in the plasma torch,
about 18KW are lost to cooling water; about 0.75KW is 
used to melt the powder.
temperature of the ionized gases, generate kinetic energy 
of the powder particles; the remainder is lost as light, 
sound, and resistance loss in the copper cables.
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Thus, for a feed rate of 0.693 g/s, our power usage for 

171.4 J/s                                                

Let’s also assume that about 1% of the metal is being 
vaporized. The heat of vaporization is shown in Table 

Using the molar ratio of this MCrAlY powder, the 
approximate heat of vaporization is 

6770 J/g                                        

In order to maintain simplicity, let us also assume that 
we are heating the powder just up to the melting point, 
with 1% being vaporized. This implies that the third term 
in eqn. (3) can be set to zero. Thus, the heat required to 

and spray the powder is

= (0.476 (2073-298) +171.4+6770x0.01) 0.693 J/s 
= (844.9 +171+67.7) *0.693 

                                                     

Heat Loss to water:  
Heat loss to water is given by

 
Let’s assume that water is flowing at 4 gallons/min 
(=4x3.785 l/min = 0.252 l/s = 252.3 ml/s) 
Also, let’s assume the water temperature rise is 30

The specific heat of water is about 4.2 J/g
thus, heat extracted by water per second is (1 ml of water 

252.3 x 4.2 x 17 = 18014 J/s 

Thus, of the 35KW power produced in the plasma torch,
about 18KW are lost to cooling water; about 0.75KW is 
used to melt the powder. The rest is used to raise the
temperature of the ionized gases, generate kinetic energy 
of the powder particles; the remainder is lost as light, 
sound, and resistance loss in the copper cables.
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Trivia Tid Bits: 
Energy required to bring a cup of water
75000 J. 
Food calories are actually Kilocalories (i.e. if a slice of 
bread is listed as having 50 calories, it actually contains 
50000 calories)! 
½ lb. cheese has ~ 4000KJ. In order to get rid of all this 
energy (as in not gaining weight
Kg of water! 
Energy required to lift a 10 lb powder bottle 4” above rest 
takes 4.5 J

 
The specific heat of gases generally increases with 
temperature and pressure. Let’s take the example of N
we can approximate (between room 
and @ 2 atm. pressure), the specific heat to be 0.26 
cal/(g
If our flow rate of nitrogen is ~ 150 scfh @ STP, the mass 
flow = 1.47 g/s. To heat up the gas to, say 10,000K, the 
power requirements are: ~ 16000 J/s (This is very much 
simplified, which disregards the ionization energy, heat 
liberated when the ions come to ground state from their 
excited state, etc.)
Kinetic Energy Calculations: Assume the powder particles 
have an uniform speed of 500 ft. per second = 15240 cm/s 
= 152.4 m/
KE= ½ mv2 = 0.5 x 0.693/1000 x 152.4
1 J = 1 kg m
Thus, power expended in accelerating the particles to the 
terminal speed is ~ 8J/s. 
Thus, more than 50% of energy is lost to water, about 
2.4% is us
heating the gases, and the rest is lost as light, sound, I
loss. If we approximate the light to be that of a 100W bulb, 
the loss from light is 100J/s.

Trivia Tid Bits: 
The average power of a loud shout is ~ 0.
conversation generates 10
population of about 10 million, if they were speak all at once, 
will generate an acoustical power of about 100W, enough to 
power one light bulb! 
Trivia question: Which organ, your eye or your e
more sensitive one?
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2. Which of the several thermal spry processes is the 
most energy efficie
 
 

We invite you to join iTSA
Why become a member of iTSA?

The iTSA provides the useful information to all 
colleagues interested in thermal spraying in the large 
industries, societies, job shops, university and 
laboratories. The iTSA members have access to the 
additional services s
about services related to thermal spraying in different 
states of India, forum of users which enables research 
of missing information related to thermal spraying and 
much more. The iTSA membership enables also a 
reduction in the fees of the events organized by the 
Society.   

 
https://www.indtsa.org/

Our Journal Publication 
Thermal Spray and Engineering (JTSE) ISSN: 2582

is an international archival journal publishing scientific papers on 
thermal spray technology; Journal provides a platform for researchers to 
share their original and innovative findings, in 
of production and application that include, but are not limited to, HOVF, 
plasma spray, flame spray, wire arc spray, and cold spray, Powder 
technology, Gas flow, particle motion, and heat transfer, Stress and strain 

, Coating deposition mechanism, Single particle deposition and 
solidification upon impact, Coating mechanical and thermal properties, 
Coating microstructures and phase transformation, Functional coatings, 
Torch design and optimization, New thermal spray te
programming and kinematic analysis, Torch trajectory definition and 
optimization, Novel applications of thermal spray coating, Mathematical and 
theoretical analysis on related subjects, Finite Element Analysis on related 
subjects. JTSE Covers Review Articles, Research Articles, Letter To Editor, 
Conference & Book Review, Notes and Short Communications. All the 
published articles are available for Download for Free.

 
http://www.inscience.in/manuscript-submission.html

                                                                                              KNOWLEDGE Point 

For HVOF systems, since powders are mostly in the 
plastic or semi-molten state, the energy utilization 
efficiency for melting is much lower. 

Homework questions: 
1. Determine heat loss to water and energy utilized for 
Inconel type powders for the JK and JP. 
2. Which of the several thermal spry processes is the 
most energy efficie

TSA! 
Why become a member of iTSA?

The iTSA provides the useful information to all 
colleagues interested in thermal spraying in the large 
industries, societies, job shops, university and 
laboratories. The iTSA members have access to the 
additional services such as job proposition, information 
about services related to thermal spraying in different 
states of India, forum of users which enables research 
of missing information related to thermal spraying and 
much more. The iTSA membership enables also a 

n in the fees of the events organized by the 

https://www.indtsa.org/ or write us

Thermal Spray and Engineering (JTSE) ISSN: 2582-1474

is an international archival journal publishing scientific papers on 
thermal spray technology; Journal provides a platform for researchers to 
share their original and innovative findings, in 
of production and application that include, but are not limited to, HOVF, 
plasma spray, flame spray, wire arc spray, and cold spray, Powder 
technology, Gas flow, particle motion, and heat transfer, Stress and strain 

, Coating deposition mechanism, Single particle deposition and 
solidification upon impact, Coating mechanical and thermal properties, 
Coating microstructures and phase transformation, Functional coatings, 
Torch design and optimization, New thermal spray te
programming and kinematic analysis, Torch trajectory definition and 
optimization, Novel applications of thermal spray coating, Mathematical and 
theoretical analysis on related subjects, Finite Element Analysis on related 

vers Review Articles, Research Articles, Letter To Editor, 
Conference & Book Review, Notes and Short Communications. All the 
published articles are available for Download for Free.

submission.html

                                                                                              SPRAYTODAY

For HVOF systems, since powders are mostly in the 
molten state, the energy utilization 

efficiency for melting is much lower. 

Homework questions:  
1. Determine heat loss to water and energy utilized for 
Inconel type powders for the JK and JP. 
2. Which of the several thermal spry processes is the 
most energy efficient process for spraying powders?

Why become a member of iTSA?  

The iTSA provides the useful information to all 
colleagues interested in thermal spraying in the large 
industries, societies, job shops, university and 
laboratories. The iTSA members have access to the 

uch as job proposition, information 
about services related to thermal spraying in different 
states of India, forum of users which enables research 
of missing information related to thermal spraying and 
much more. The iTSA membership enables also a 

n in the fees of the events organized by the 

or write us info@indtsa.org

1474 

is an international archival journal publishing scientific papers on 
thermal spray technology; Journal provides a platform for researchers to 
share their original and innovative findings, in addition to identifying methods 
of production and application that include, but are not limited to, HOVF, 
plasma spray, flame spray, wire arc spray, and cold spray, Powder 
technology, Gas flow, particle motion, and heat transfer, Stress and strain 

, Coating deposition mechanism, Single particle deposition and 
solidification upon impact, Coating mechanical and thermal properties, 
Coating microstructures and phase transformation, Functional coatings, 
Torch design and optimization, New thermal spray te
programming and kinematic analysis, Torch trajectory definition and 
optimization, Novel applications of thermal spray coating, Mathematical and 
theoretical analysis on related subjects, Finite Element Analysis on related 

vers Review Articles, Research Articles, Letter To Editor, 
Conference & Book Review, Notes and Short Communications. All the 
published articles are available for Download for Free.

submission.html 

SPRAYTODAY™ | 

For HVOF systems, since powders are mostly in the 
molten state, the energy utilization 

efficiency for melting is much lower.  

1. Determine heat loss to water and energy utilized for 
Inconel type powders for the JK and JP.  
2. Which of the several thermal spry processes is the 

nt process for spraying powders?

The iTSA provides the useful information to all 
colleagues interested in thermal spraying in the large 
industries, societies, job shops, university and 
laboratories. The iTSA members have access to the 

uch as job proposition, information 
about services related to thermal spraying in different 
states of India, forum of users which enables research 
of missing information related to thermal spraying and 
much more. The iTSA membership enables also a 

n in the fees of the events organized by the 

info@indtsa.org

is an international archival journal publishing scientific papers on 
thermal spray technology; Journal provides a platform for researchers to 

addition to identifying methods 
of production and application that include, but are not limited to, HOVF, 
plasma spray, flame spray, wire arc spray, and cold spray, Powder 
technology, Gas flow, particle motion, and heat transfer, Stress and strain 

, Coating deposition mechanism, Single particle deposition and 
solidification upon impact, Coating mechanical and thermal properties, 
Coating microstructures and phase transformation, Functional coatings, 
Torch design and optimization, New thermal spray technology, Robotic 
programming and kinematic analysis, Torch trajectory definition and 
optimization, Novel applications of thermal spray coating, Mathematical and 
theoretical analysis on related subjects, Finite Element Analysis on related 

vers Review Articles, Research Articles, Letter To Editor, 
Conference & Book Review, Notes and Short Communications. All the 
published articles are available for Download for Free. 

 iTSA                             

For HVOF systems, since powders are mostly in the 
molten state, the energy utilization 

1. Determine heat loss to water and energy utilized for 

2. Which of the several thermal spry processes is the 
nt process for spraying powders? 

The iTSA provides the useful information to all 
colleagues interested in thermal spraying in the large 
industries, societies, job shops, university and 
laboratories. The iTSA members have access to the 

uch as job proposition, information 
about services related to thermal spraying in different 
states of India, forum of users which enables research 
of missing information related to thermal spraying and 
much more. The iTSA membership enables also a 

n in the fees of the events organized by the 

info@indtsa.org   

is an international archival journal publishing scientific papers on 
thermal spray technology; Journal provides a platform for researchers to 

addition to identifying methods 
of production and application that include, but are not limited to, HOVF, 
plasma spray, flame spray, wire arc spray, and cold spray, Powder 
technology, Gas flow, particle motion, and heat transfer, Stress and strain 

, Coating deposition mechanism, Single particle deposition and 
solidification upon impact, Coating mechanical and thermal properties, 
Coating microstructures and phase transformation, Functional coatings, 

chnology, Robotic 
programming and kinematic analysis, Torch trajectory definition and 
optimization, Novel applications of thermal spray coating, Mathematical and 
theoretical analysis on related subjects, Finite Element Analysis on related 

vers Review Articles, Research Articles, Letter To Editor, 
Conference & Book Review, Notes and Short Communications. All the 

                             

 

29 



 
 
 
 

                                                                                                                             

 
India’s 1

                                                                                                                             

India’s 1

                                                                                                                             

India’s 1st thermal spray magazine…

https://www.indtsa.org/

                                                                                                                             

thermal spray magazine…

https://www.indtsa.org/

http://www.inscience.in/

                                                                                                                             

 

thermal spray magazine…

https://www.indtsa.org/

 

http://www.inscience.in/

                                                                                                                             

 

thermal spray magazine…

https://www.indtsa.org/  

  

http://www.inscience.in/  

                                                                                                                             

thermal spray magazine…

 

                                                                                                                                                           

thermal spray magazine…

                              

thermal spray magazine… 

 

 


	0cover1-6
	1Feature 7-9
	2Technical Note10-15
	3Page 16-17
	4 Industrial18-21
	5 Academia 22-26
	6 Knowledge Point27-29
	7Back Cover30

